ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ (ВНИИМС)

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ДОСТОВЕРНОСТЬ И ТРЕБОВАНИЯ К МЕТОДИКАМ ПОВЕРКИ СРЕДСТВ ИЗМЕРЕНИЙ

> Москва ИЗДАТЕЛЬСТВО СТАНДАРТОВ 1987

РАЗРАБОТАНЫ Всесоюзным научно-исследовательским институтом метрологической службы (ВНИИМС)

Руководитель темы и исполнитель В.М. Кашлаков

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Отделом стандартизации в области метрологии ВНИИМС

Начальник отдела Г.П. Сафаров

УТВЕРЖДЕНЫ ВНИИМС 25 июля 1986 г.

УДК 389.14.64 Группа Т80.0

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ГСИ Средства измерений. Критерии достоверности и параметры методик поверки

Взамен МИ 187-79

МИ 187-86

Введены в действие с 01.07.87 г.

Настоящие методические указания предназначены для использования при разработке нормативно-технической документации (НТД), предусмотренной ГОСТ 8.375-80, ГОСТ 8.042-83, в соответствии с которой производятся первичная, периодическая, послеремонтная поверка средств измерений (СИ) органами государственной и ведомственной метрологических служб.

Методические указания устанавливают номенклатуру критериев достоверности поверки (производимой путем контроля основной погрешности СИ на соответствие норме, установленной в НТД) и параметров методик поверки.

Устанавливаемые критерии используются в качестве основных исходных данных при установлении значений параметров методик поверки.

Примечания:

- 1. В НТД, регламентирующей методики поверки конкретных типов СИ, необходимо указывать допускаемые значения критериев, принятые при установлении значений параметров методик поверки.
- 2 В НТД, регламентирующих общие требования к методикам поверки групп однотипных СИ, необходимо указывать, что для задания требуемой достоверности поверки конкретных типов СИ, входящих в категорию, должна использоваться номенклатура критериев и параметров, рекомендуемых настоящими методическими указаниями.
- 3 Устанавливаемые методическими указаниями критерии можно также использовать для оценки достоверности поверки при проведении метрологической экспертизы указанной выше НТД; при проведении метрологической экспертизы технических заданий (предложений) на СИ, предусмотренной ГОСТ 8.384-80 или ГОСТ 8.326-78.

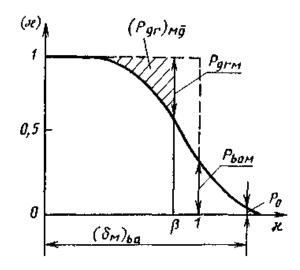
Основные термины, используемые в настоящих методических указаниях, приведены в приложении 2, обозначения - в приложении 3.

1. КРИТЕРИИ ДОСТОВЕРНОСТИ ПОВЕРКИ

1.1. Устанавливаются следующие критерии достоверности поверки:

 P_{bam} - наибольшая вероятность ошибочного признания годным любого в действительности дефектного экземпляра СИ;

 $(\delta_{\rm M})_{ba}$ - отношение наибольшего возможного модуля контролируемой характеристики погрешности экземпляра СИ, который может быть ошибочно признан годным, к пределу ее допускаемых значений.


Примечание. За наибольшее возможное принимается такое значение контролируемой характеристики экземпляра СИ, при котором вероятность ошибочного признания его годным, уменьшаясь, достигает значения P_0 равного или практически близкого к нулю;

 $(P_{gr})_{_{M}\overline{g}}$ - наибольшая средняя для совокупности годных экземпляров СИ вероятность ошибочного признания дефектным в действительности годных экземпляров СИ.

Примечания:

- 1. Критерии P_{bam} и $(\delta_{\rm M})_{ba}$ характеризуют достоверность поверки любого дефектного экземпляра СИ, $(P_{gr})_{{}_{\rm M}\,\overline{g}}$ достоверность поверки совокупности годных экземпляров СИ в среднем.
- 2. При малом числе (или одном) поверяемых СИ вместо $(P_{gr})_{M\overline{g}}$ в качестве критерия может быть установлена наибольшая вероятность P_{grm} ошибочного признания дефектным любого в действительности годного экземпляра СИ.

- 1.2. За основные, с точки зрения обеспечения единства измерений, принимают критерии P_{bam} и $(\delta_{\rm M})_{ba}$, за дополнительный $(P_{gr})_{{\rm M}\overline{g}}$.
- 1.3. Графическая иллюстрация определений, данных в п. 1.1, приведена на рисунке, где $\chi = Q/|G_p|$ отношение значения контролируемой характеристики Q к модулю ее предельно допускаемого значения G_p (рисунок иллюстрирует случай, когда $\chi \geq 0$); $L(\chi)$ условная вероятность признания поверяемого экземпляра СИ годным при условии, что χ имеет некоторое конкретное значение (оперативная характеристика); $\chi = 1$ нормализованная (в долях модуля G_p) граница, левее которой находится область значений χ для годных в действительности экземпляров СИ, правее для дефектных в действительности СИ; $\beta = G_\beta/|G_p|$ нормализованная граница области $0 \leq Q \leq G_\beta$ таких значений Q, для которых отрицательные результаты контроля (экземпляр СИ признается дефектным) рекомендуется считать ошибочными ($G_\beta \leq G_p$).

Критерию P_{bam} соответствует ордината кривой $L(\chi)$ в точке $\chi=1$, являющаяся наибольшей из тех, которые могут иметь место при $\chi>1$.

Критерию $(\delta_{\rm M})_{ba}$ соответствует абсцисса кривой $L(\chi)$, при которой ее ордината P_0 равна (или практически близка) нулю. При этом $(\delta_{\rm M})_{ba} = Q_{\rm M}/|G_{\rm p}|$, где $Q_{\rm M}$ - наибольшее возможное значение контролируемой характеристики Q экземпляра СИ, который может быть ошибочно признан годным с вероятностью P_0 .

Критерию $(P_{gr})_{M\overline{g}}$ соответствует заштрихованная на рисунке площадь, численно характеризующая отношение числа ошибочно забракованных в области $(0 - \beta)$ экземпляров СИ к их общему в области (0 - 1) числу.

Примечания:

- 1. Пунктирной линией на рисунке показана идеальная оперативная характеристика, которая имела бы место при идеальной методике поверки.
- 2. Вид реальной оперативной характеристики и, следовательно, ее отклонения от идеальной полностью определяется методикой поверки и ее параметрами.
 - 3. Критерию $P_{\rm grm}$ соответствует дополнение ординаты кривой $L(\chi)$ до единицы в точке $\chi=\beta$.
- 4. Выделение области $(0 \le \chi \le \beta)$, т.е. принятие $\beta < 1$ целесообразно не всегда. Введение $\beta < 1$ имеет смысл в тех случаях, когда контролируемая характеристика может после контроля изменяться настолько, что вскоре после контроля возможен ее выход за границы поля допуска. Введение $\beta < 1$ как бы учитывает заинтересованность потребителя в том, чтобы экземпляры СИ, контролируемые характеристики которых хотя и находятся в границах поля допуска, но близки к этим границам и, следовательно, вскоре могут потребовать ремонта, признавались (с некоторой вероятностью) дефектными. В противных случаях принимается $\beta = 1$.
- 1.4. Математические выражения для критериев, установленных в п. 1.1, приведены в приложении 1.

2. ПАРАМЕТРЫ МЕТОДИК ПОВЕРКИ

- 2.1. За параметры методик поверки принимаются характеристики погрешности поверки (или наблюдений при поверке) и алгоритма контроля основной погрешности, входящие параметрами в выражение оперативной характеристики $L(\chi)$ непосредственно влияющие на достоверность поверки экземпляров СИ.
 - 2.2. В общем случае устанавливаются следующие параметры методик поверки:
 - т число проверяемых в диапазоне измерения СИ точек;
- Ω_p допускаемая при выборе числа m разность между наибольшим модулем непрерывной нормализованной функции $\Delta_{0s}(x)$ систематической составляющей основной погрешности в диапазоне измерения СИ и его значением в соседствующей поверяемой точке.

Примечание. Нормализация функции $\Delta_{0s}(x)$ осуществляется делением на модуль предела Δ_{0sp} ее допускаемых значений;

- n число наблюдений при экспериментальном определении значений погрешности в проверяемой точке, подлежащих совместной обработке для получения результата измерения погрешности;
- γ абсолютное значение отношения границ $\pm G_{\gamma}$ поля контрольного допуска, с которыми сравнивается полученная при поверке оценка \tilde{Q} контролируемой характеристики Q с целью принятия решения о годности или дефектности конкретного экземпляра СИ, к модулю G_p .

Примечание. Это отношение равно: $\gamma = \Delta_{0\gamma}/|\Delta_{0p}|$ - при контроле основной погрешности Δ_0 ; $\gamma_s = \Delta_{0s\gamma}/|\Delta_{0sp}|$ - при контроле ее систематической составляющей Δ_{0s} ; $\gamma_\sigma = \sigma_\gamma [\stackrel{\circ}{\Delta_0}]/\sigma_p [\stackrel{\circ}{\Delta_0}]$ - при контроле среднего квадратического отклонения (С к о) $\sigma [\stackrel{\circ}{\Delta_0}]$ ее случайной составляющей $[\stackrel{\circ}{\Delta_0}]$. Здесь Δ_{0p} , Δ_{0sp} , $\sigma [\stackrel{\circ}{\Delta_0}]$ пределы допускаемых значений для Δ_0 , Δ_{0s} , $\sigma [\stackrel{\circ}{\Delta_0}]$ соответственно;

 α - отношение предела допускаемого значения погрешности Δ_I поверки (при n=1) или характеристик погрешности наблюдений (при n>1) при поверке к пределу допускаемого значения контролируемой характеристики.

2.3. Параметры методик поверки подразделяются на две группы.

К первой группе относятся параметры m и Ω_p . Они входят в число исходных данных при установлении значений параметров второй группы.

Ко второй группе относятся параметры α_p (или α_{sp} и $\alpha_{\sigma p}$), γ (или γ_s и γ_σ), n. Их значения устанавливаются в соответствии с рекомендациями методических указаний МИ 188-86 "ГСИ. Средства измерений. Установление значений параметров методик поверки".

2.4. В зависимости от числа m проверяемых точек и числа n наблюдений можно выделить: методики поверки однозначных мер с несущественной ($m=1,\ n=1$) и существенной ($m=1,\ n>1$) случайной составляющей основной погрешности, методики поверки измерительных устройств (ИУ) с несущественной ($m>1,\ n=1$) и существенной ($m>1,\ n>1$) случайной составляющей основной погрешности, различающиеся номенклатурой и значениями параметров.

Примечание. К ИУ относится категория СИ, охватывающая измерительные приборы и измерительные преобразователи.

- 2.4.1. Номенклатуру параметров методик поверки однозначных мер с несущественной случайной составляющей основной погрешности составляют: параметры 1 группы m=1, $\Omega_p=0$; параметры 2 группы n=1, $\gamma \leq 1$, $\alpha_p < 1$.
- 2.4.2. Номенклатуру параметров методик поверки ИУ с несущественной случайной составляющей основной погрешности составляют: параметры 1 группы $m>1,~\Omega_p>0;$ параметры 2 группы $n=1,~\gamma\leq 1,~\alpha_p<1.$
- 2.4.3. Номенклатуру параметров методик поверки однозначных мер с существенной случайной составляющей основной погрешности составляют: параметры 1 группы m=1, $\Omega_p=0$; параметры 2 группы n>1, $\gamma_s\leq 1$, $\alpha_{sp}<1$, $\alpha_{sp}<1$.
- 2.4.4. Номенклатуру параметров методик поверки ИУ с существенной случайной составляющей основной погрешности составляют: параметры 1 группы $m>1,~\Omega_p>0;$ параметры 2 группы $n>1,~\gamma_s\leq 1,~\alpha_{sp}<1,~\alpha_{sp}<1.$

Математические выражения для критериев

Математические выражения для критериев, установленных в п. 1.1 имеют следующий вид:

$$P_{bam} = L(\chi)$$
 в точке $\chi = 1$ или $\chi = -1$; (1)

$$(\delta_{\rm M})_{ba} = L^{-1}(P)$$
 в точке $P = P_0$, (2)

где $L^{\text{-1}}(P)$ - функция, обратная функции $L(\chi)$;

$$(P_{gr})_{\overline{g}} = \beta - \int_{0}^{\beta} L(\chi) d\chi.$$
 (3)

Оперативная характеристика $L(\chi)$ имеет следующее выражение

$$L(\chi) = \int_{-\gamma}^{\gamma} \varphi(\tilde{\chi}/\chi) d\tilde{\chi} , \qquad (4)$$

где $\varphi(\tilde{\chi}/\chi)$ - условная (при условии, что контролируемая характеристика χ приняла некоторое конкретное значение) плотность распределения (ПР) вероятностей нормализованной оценки $\tilde{\chi} = \tilde{Q}/|G_p|$, получаемой путем измерений Q при контроле.

Примечания:

- 1. Формула (3) справедлива при условии, что ПР вероятностей контролируемой характеристики χ по совокупности годных в действительности СИ является равномерной функцией в пределах от -1 до +1 и $\phi(\tilde{\chi}/\chi)$ является симметричной функцией.
 - 2. Математическое выражение для критерия $P_{\it grm}$ имеет вид $P_{\it grm}=1$ - $L(\chi)$ в точке $\chi=\beta.$

Основные термины

Погрешность поверки - по ГОСТ 16263-70.

Погрешность наблюдения - отклонение результата наблюдения от истинного значения измеряемой величины.

Примечания:

- 1. При n = 1 погрешность поверки совпадает с погрешностью наблюдения при поверке.
- 2. Погрешность наблюдения при поверке включает в себя погрешность образцового СИ; погрешности, обусловленные вспомогательными СИ; погрешности, возникающие в конкретной схеме включения (соединения) поверяемого, образцового и вспомогательного СИ; методические погрешности, возникающие при наблюдении.

Результат наблюдения - по ГОСТ 16263-70.

Оценка контролируемой характеристики - результат измерения контролируемой характеристики.

Поле контрольного допуска - интервал, при нахождении в котором оценки контролируемой характеристики основной погрешности конкретного экземпляра СИ, принимается решение о его годности.

Проверяемые точки - такие значения входного (выходного) сигнала, при которых производится контроль дискретных значений характеристики основной погрешности, являющейся непрерывной функцией входного сигнала в диапазоне измерений СИ.

Достоверность поверки - свойство поверки, характеризуемое степенью соответствия заключения о принадлежности контролируемой характеристики действительной принадлежности ее к области допускаемых для нее значений.

Условные обозначения

- G_{β} абсолютное значение границ интервала (- $G_{\beta} \leq Q \leq G_{\beta}$) таких значений Q, для которых отрицательные результаты контроля рекомендуется считать ошибочными;
 - β абсолютное значение отношения границ $\pm G_{\beta}$ к модулю G_{p}
- P_0 близкая (или равная) нулю вероятность, которой на оперативной характеристике соответствует отношение $(\delta_{\rm M})_{ba}$;
 - $L^{-1}(P)$ функция, обратная оперативной характеристике $L(\chi)$;
 - \tilde{Q} оценка контролируемой характеристики Q;
 - $\tilde{\chi}$ нормализованное (в долях модуля G_p) значение оценки \tilde{Q} ;
- G_{γ} модуль границ поля контрольного допуска, с которыми сравнивается оценка \tilde{Q} с целью принятия решения о годности (дефектности) экземпляра СИ;
- $\phi(\tilde{\chi}/\chi)$ условная (при условии, что χ приняло некоторое конкретное значение) плотность распределения вероятностей нормализованной оценки $\tilde{\chi}$;
- $\Delta_{0\gamma}$, $\Delta_{0s\gamma}$, $\sigma_{\gamma}[\stackrel{\circ}{\Delta}_{0}]$ модуль границ полей контрольных допусков при контроле Δ_{0} , Δ_{0s} , $\sigma[\stackrel{\circ}{\Delta}_{0}]$ соответственно.

Индексы, используемые в обозначениях критериев по п. 1.1

- g годный (good),
- b дефектный (bad),
- α признанный годным (accepted),
- r признанный дефектным (rejected);
- x общее обозначение информативного параметра входного сигнала;
- $\Delta_{0s}(x)$ функция, представляющая собой зависимость систематической составляющей Δ_{0s} от информативного параметра х входного сигнала;
 - $\chi_{0s}(x)$ нормализованная (в долях модуля Δ_{0sp}) функция $\Delta_{0s}(x)$;
 - m число проверяемых точек;
- Ω разность между наибольшим модулем непрерывной функции $\chi_{0s}(x)$ систематической составляющей погрешности и его значением в соседствующей проверяемой точке;
 - Ω_p допускаемое при выборе числа m значение Ω ;
- n число наблюдений при поверке (при наличии вариации число наблюдений при прямом или обратном ходе);
 - Δ_I погрешность поверки (при n > 1 наблюдений при поверке);
 - Δ_{Is} систематическая составляющая погрешности Δ_{I} ;
 - Δ_I случайная составляющая погрешности Δ_I ;
 - $\sigma[\stackrel{\circ}{\Delta}_I]$ среднее квадратическое отклонение случайной составляющей $\stackrel{\circ}{\Delta}_I$;
 - $\Delta_{Ip}, \Delta_{Isp}, \sigma[\Delta_I]$ пределы допускаемых значений для $\Delta_I, \Delta_{Is}, \sigma[\stackrel{\circ}{\Delta_I}]$ соответственно;
- α_p , α_{sp} , $\alpha_{\sigma p}$ отношения пределов допускаемых значений погрешности поверки (или характеристик погрешности наблюдений при поверке) к пределам допускаемых значений основной погрешности (или ее контролируемых характеристик).

